Structure and Propagation of Triple Flames in Partially Premixed Hydrogen–Air Mixtures
نویسنده
چکیده
The characteristics of triple flames in a hydrogen–air mixing layer are studied using direct numerical simulation with detailed chemistry. Triple flames are initiated by imposing a temperature ignition source in the center of a scalar mixing layer of nonuniform thickness, thereby forming a pair of freely propagating triple flames. Two different fuel streams are studied: pure hydrogen and hydrogen diluted with nitrogen. During the ignition stage, the initial ignition runaway is followed by a secondary peak as the ignition kernel transitions to a triple flame, consistent with previous observations. For both diluted and undiluted cases, the triple flame structure exhibits more similarity with a diffusion flame than with a premixed flame, such that the triple point, defined as the location of maximum heat release, is always in the proximity of the stoichiometric mixture fraction line. Similar to a previous study of methanol–air triple flames, the enhancement in the stabilization speed is attributed mainly to flow divergence, and its value is proportional to the square root of the density ratio across the flame. In the undiluted case, however, the asymmetric flame structure results in distinct locations where the stabilization speed and the displacement speed are maximum. The effect of unsteady strain rate is also studied by imposing a pair of vortices on the propagating triple flames. The negative strain rate results in the collapse of the premixed flame branches onto the diffusion flame, forming an edge flame structure. Excessive compressive strain and curvature at the triple flame tip leads to a negative displacement speed. A mixture fraction/temperature parameterization is shown to be useful in representing the structure of a triple flame subjected to unsteady strain rate. © 1999 by The Combustion Institute
منابع مشابه
The Effect of Hydrogen Addition on the Combustion Characteristics of RP-3 Kerosene/Air Premixed Flames
Experimental studies have been performed to investigate the effects of hydrogen addition on the combustion characteristics of Chinese No.3 jet fuel (RP-3 kerosene/air premixed flames. Experiments were carried out in a constant volume chamber and the influences of the initial temperatures of 390 and 420 K, initial pressures of 0.1 and 0.3 MPa, equivalence ratios of 0.6–1.6 and hydrogen additions...
متن کاملEffect of multistage combustion on NOx emissions in methane–air flames
Coflow and counterflow methane–air flames are simulated over a complete partially premixed regime in order to characterize the effects of dominant combustion modes (i.e., single-, two-, and three-stage combustion) on NOx emissions. Simulations employ a comprehensive numerical model that uses detailed descriptions of transport and chemistry (GRI-2.11 mechanism) and includes radiation effects. It...
متن کاملRadiation and Nitric Oxide Formation in Turbulent Non-premixed Jet Flames
Radiative heat transfer has a significant effect on nitric oxide (NO) formation in turbulent non-premixed flames. Consequently, predictive models of turbulent non-premixed flames must include an accurate radiation submodel. To investigate the importance of radiation submodels in modeling NO formation, multiscalar measurements of temperature and species were coupled with radiation measurements i...
متن کاملBuoyant Unstable Behavior of Initially Spherical Lean Hydrogen-Air Premixed Flames
Buoyant unstable behavior in initially spherical lean hydrogen-air premixed flames within a center-ignited combustion vessel have been studied experimentally under a wide range of pressures (including reduced, normal, and elevated pressures). The experimental observations show that the flame front of lean hydrogen-air premixed flames will not give rise to the phenomenon of cellular instability ...
متن کاملCyclic flame propagation in premixed combustion
In experiments of hot surface ignition and subsequent flame propagation, a puffing flame instability is observed in mixtures that are stagnant and premixed prior to ignition. By varying the size of the hot surface, power input, and combustion vessel volume, it was determined that the instability is a function of the interaction of the flame, with the fluid flow induced by the combustion product...
متن کامل